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ABSTRACT

Spamming is a major issue in the area of web search. There are many features (Link & Content based) 
which are used for spam and non-spam classification. This paper recommends CFS+PSO, which takes 
the advantages of swarm behaviour (uses randomness and global communication between particles) and 
Correlation Based Feature Selection Technique (CFS). The objective of feature selection is to build logical 
model with improved performance in time and accuracy. The performance of CFS+PSO is evaluated on 
WEBSPAM-UK2006 with Multilayer Perceptron (MLP), Naïve Bayes, Support Vector Machine (SVM), 
J48 & AdaBoost. Experimental results show great decline in existing features and computational time 
while increases in the accuracy measures (F1 Score and AUC). 

Keywords: Content and link based features, correlation based feature selection, data mining, filter and 
wrapper model, particle swarm optimization, spam

INTRODUCTION

Web spamming (which is  known as 
spamdexing) is recognised as one of the 
main problems of search engines (Gyongyi & 
Garcia-Molina, 2005). Nowadays, information 

retrieval (IR) is a main concern of search 
engine industries. Spam not only corrupts 
the search quality but along with it, weakens 
the trust of users in a particular search engine 
and leads to phishing (Webber, Maria de 
Fátima, & Hepp, 2012). The manipulation 
can be done in different forms like adding 
content spam and link spam. Content spam 
is a common area for spammers because 
search engines (like Google & Yahoo!) use 
models which are based on the rank and 
content of websites. Primarily based on the 
web document structure, content spamming 
is subdivided into five categories, namely, 
title, body, meta-tags, anchor text, and URL 
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spamming (Gyongyi & Garcia-Molina, 2005). In link spamming, the spammer creates a large 
number of links to a page just to increase the link based rank.

Many conventional algorithms are developed for spam detection but infeasible due to the 
dynamic growth of the Web (Becchetti, Castillo, Donato, Baeza-Yates, & Leonardi, 2008). 
However, machine learning (ML) algorithms give better results due to their ability to study 
the necessary patterns (Goh & Singh, 2015). Along with ML algorithms, feature selection 
(FS) shows a crucial part in the success of spam detection. Most machine learning strategies 
or algorithms degrade in execution when executed with most features that are not essential or 
repetitive for anticipating the desired results (Li, Li, & Liu, 2017). 

In a broad way, FS is divided into the following: filter technique, wrapper technique and 
hybrid technique (Yu & Liu, 2004). Statistical analysis is required for features without any 
ML structure while the ML model is assumed in wrapper method to confirm (validate) the 
learning performance of the particular model (Guyon & Elisseeff, 2003; Dash & Liu, 1997). 
The hybrid model or technique takes the strengths of both models (Huang, Cai, & Xu, 2007).
The representation of all three models or techniques are given in Figure 1. 
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The best (optimum) features can be created and the search process is carried out in some ways, 
like SFS (sequential forward search), SBS (sequential backward search) and Bidirectional 
search. In SFS (Guan, Liu, & Qi, 2004; Reunanen, 2003), the search process starts with 
a blank set and adds features successfully but SBS search starts with a complete set and 
then eliminates features (Gasca, Sanchez, & Alonso, 2006; Hsu, Huang, & Dietrich, 2002). 
Bidirectional selection search starts with both sides and increases and eliminates features at 
the same time (Caruana & Freitag, 1994). There is an alternative search called complete search 
but is not possible with huge number of features (like in web spam area). According to Pudil, 
Novovicova and Kittles (1994), an additional search algorithm, known as floating search is 
proposed because of nesting effect in SFS or SBS. 
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Many of the above search techniques (or strategies) use local instead of global search 
(Kabir, Shahjahan, & Murase, 2012). These algorithms suffer from computational complexity 
due to partial search over the features set (space). Thus, most of the research is carried out on 
metaheuristics (nature inspired) algorithms (Ke, Feng, & Ren, 2008). The two primary segments 
of metaheuristic algorithms are determination of best solutions and randomisation. The former 
affirms that solutions will join to optimality while the latter keeps away the solution being 
stuck at local optima and increase the differing potentials of solutions. To accomplish these 
objectives, researchers have tried many metaheuristic methods including Firefly algorithms 
(Yang & He, 2013), Harmony algorithms (Ramos, Souza, Chiachia, Falcao, & Papa, 2011), 
Bee algorithms (Karaboga & Basturk, 2007), GA (Yang & Honavar, 1998), Ant Colony 
Optimisation (Kabir, Shahjahan, & Murase, 2009), Simulated Annealing (Filippone, Masulli, 
& Rovetta, 2006) and Wolf-Search algorithms (Song, Fong, & Tang, 2016; Tang, Fong, Yang, 
& Deb, 2012) in solving feature subset selection in various problems.

In this work, a CFS+PSO technique is suggested, which is combination of correlation based 
feature selection approach and particle swarm optimisation methodology that uses a hybrid 
search approach in feature space of web-spam area. The key emphasis of this technique is to 
create subsets of significant features of lesser size. This method exploits swarm intelligence 
in search strategy which combines with filter technique. The objective is to search the global 
best solution among the current best. Also, hybrid techniques are proficient in discovering a 
better answer, when a single method is frequently restricted with insufficient solution. 

The rest of the paper is sequenced in five segments. Related work regarding feature 
selection and search methods are explored in segment 2. Segment 3 explains the CFS+PSO 
technique. Experimental and parameters setting are discussed in segment 4. The outcome results 
are displayed in segment 5. Finally, the conclusion with future scope is described in segment 6.

RELATED WORK

Basically, FS is a method of rejecting the irrelevant features to enhance the performance (time 
& accuracy) of ML algorithms. FS can be categorised mainly in two types: feature subset 
determination and feature ranking based on how the features are joined for assessment. Space 
and computational complexity is high in feature subset selection approach because it evaluates 
the individual feature subset with a feature selection metric (correlation or consistency) using 
any one of the searching techniques (Bolón-Canedo, Sánchez-Maroño, & Alonso-Betanzos, 
2013). In feature ranking, each feature is ranked using selection metric such as chi-square 
feature evaluation, information gain, gain ratio attribute assessment and symmetric uncertainty. 
Then, top ranking attributes or features are selected as significant features by some threshold 
value. Space and time complexity is less compared to subset selection for this approach. 
Furthermore, FS algorithms can be divided in three classes: filter, wrapper and hybrid. Filter is 
done by ranking of features and determination of feature subset while wrapper creates subsets 
by use of any search technique, then assesses these sets using machine learning classifiers (Dash 
& Liu, 1997). Run time and search overhead is increased in comparison with filter technique. 
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Neural Network (NN), Support Vector Machines (SVM) and Boosting Algorithm can be used 
as a classification function in wrapper or filter method (Breiman, 1996, 2001; Cortes & Vapnik, 
1995; Haykin & Lippmann, 1994; Quinlin, 1993). 

In actual fact, filter methods are fast and easy to implement because of the assessment 
of features without any model presumed between outputs and inputs of the data. Chow and 
Huang (2005) present an idea of mutual information. PCA method is implemented to remove 
redundancy between the segments of high-dimensional vector data which empowers a lower-
dimensional data without main loss of information (Kambhatla & Leen, 1997). Abdulla and 
Kasabov (2003) designed a model where features are reduced by refining the dominance effects. 

The new FS technique is based on chi-square statistical measure (CHIR) given by Li, 
Luo and Chung (2008). Song, Ni and Wang (2013) propose a clustering technique in which 
features are separated into clusters, then highly illustrative feature that is intensely connected 
to objective classes is selected from clusters to build a new subset of features. Sotoca and Pla 
(2010) have applied hierarchical clustering technique. 

Searching also shows a very critical role in finding of significant features from a given 
dataset for any feature selection method. Different types of sequential or metaheuristic 
algorithms are proposed for the searching problem. Sequential search is applied by many 
researchers (Gasca et al., 2006; Guan et al., 2004; & Hsu et al., 2002). Uğuz (2011) 
proposed Information Gain (IG) and GA & PCA (feature selection and extraction methods). 
Shunmugapriya and Kanmani (2017) applied a hybrid technique, which takes the benefits of 
ACO as well as Artificial Bee Colony (ABC) techniques to optimise FS. Some bio-inspired 
metaheuristic algorithms are also invented which includes Firefly (Yang, 2009), Cuckoos (Yang 
& Deb, 2009) and Bats (Yang, 2010).

PROPOSED METHODOLOGY

Feature selection method includes four steps, which are defined as: (a) subset generation - 
selection of an initial point (feature subset) because it can influence the search direction, (b) 
evaluation function - this step assesses the subset produced in the previous step by using filter 
or wrapper approach, since previous approach is autonomous of the induction algorithm while 
wrapper techniques use induction algorithm for assessing the weight of highlight subsets, (c) 
stopping criteria - a stopping point must be chosen because dependent upon the valuation policy, 
a feature selector may leave including (or expelling) features (elements) when the quality 
value of a present feature subset is not increasing, and (d) validation methodology - validation 
technique is to check whether the feature subset choice is substantial or not. Usually the result 
of the original feature set is compared with the feature set chosen in the previous step as input 
to some induction algorithm utilising datasets (Dash & Liu, 1997).

Feature Selection (CFS)

CFS algorithm selects features depending on correlation based heuristic assessment function 
(Hall, 1999). The preference of the assessment function is towards subsets whose features 
are extremely related with the class but independent of other features. Unrelated features are 
disregarded on the fact that they show less association with the class while other features are 
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separated out as they will be very much linked with at least some of the features. CFS evaluation 
(or assessment) function (Senliol, Gulgezen, Yu, & Cataltepe, 2008) is as:

                   (1)

where Ms is the heuristic “function” of a feature subset S containing k features,  is the mean 
feature-class correlation (f ∈ S), and  is the average of feature-feature intercorrelation.  
denotes predictiveness of the class with a set of features where  shows 
redundancy between the features. The above condition is the fundamental of CFS and the set 
of features with the highest value found during the process is utilised to reduce the size of both 
the training and testing set. Figure 2 demonstrates the steps of the CFS algorithms. 
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Optimisation Strategy

Optimisation is dominant in many applications. The main idea behind optimisation is to 
minimise the cost (computation, time and resources) and to maximise the performance and 
proficiency. Due to the various constraints in real world applications, we have to find optimal 
solutions. PSO was developed in 1995, based on the swarm nature to monitor the particles for 
searching global best solutions. However, PSO has many resemblances with GA and Virtual 
Ant Algorithms but instead of using crossover (or mutation), it takes advantage of global 
communication between the particles.

PSO searches for space of an objective function by adjusting the paths of individual 
particles. The movement of particles can be described by two main segments: stochastic and 
deterministic. The particles are involved towards the position of gb* (global best) and their 
best location (xi

*), while in the interim it tends to move arbitrarily. When the particles find a 
position which is superior to any earlier found position, it updates it as the new current best for 
that particle. The main objective is to search the globally best solution between all the existing 
best solutions until there is no more improvement. The main steps of PSO is summarised in 
algorithm shown in Figure 3. Each particle has a position in the search area, which is denoted 
by xi = (x1, x2, x3, x4… xn). Particles scan or move in search space for the best solutions. Every 
particle has a velocity, which is denoted as vi = (v1,v2,v3,v4 …vn). During this movement, each 
particle refreshes (updates) its velocity and position according to its own and its neighbour’s 
experience (Eq. 2 & Eq. 3).
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                (2)

                    (3)

Here t signifies the count of iteration and w is inertia weight in the optimisation process, which 
is for controlling the influence of the previous velocities on the current velocity. The c1 and c2 

are learning parameters (or acceleration constants) and r1 and r2 are random values distributed 
in between 0 and 1. The algorithm ends when a predetermined condition is achieved, which can 
be a good fitness value or a maximum number of iterations (Xue, Zhang, & Browne, 2013).
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CFS+PSO Algorithm

In this segment, CFS+PSO algorithm is recommended, which is used to assess the importance 
and the dismissal of the selected feature subset. CFS+PSO utilises correlation based feature 
technique to form the fitness functions and assessment of integrity of the reduced feature 
subset. For a feature subset X with m features, X = (x1, x2, x3, x4……. xm), CFS assesses 
mean of association between feature-class and average of intercorrelation between feature-
feature to decrease the classification error or increase accuracy (by using Eq.1). The subset of 
independently good features may not be the best combination because of redundancy between 
features. 	
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The removal of redundant features can increase performance due to the reduction of the 
dimensionality. In PSO, every solution of the problem is denoted by a particle, which can be 
represented by array (or vector). Particles move in search space to search for the best solutions 
and during this movement, every particle can remember its best experience with its neighbours. 
So, all particles search for the optimal (best) answer by updating the position of each particle, 
based on its best experience and its nearby particles. Steps involved in CFS+PSO algorithm 
is shown in Figure 5.
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BENCHMARK AND PARAMETER SETTING

In this paper we use publicly available benchmark WEBSPAM UK-2006, which consists of 777, 
410, 46 pages in 11,402 hosts in the UK domain (“WEBSPAM UK-2006”, 2006). Features are 
distributed as content and link-based. In Table 1, A denotes the content-based features (Ntoulas, 
Najork, Manasse, & Fetterly, 2006). There are a total of 96 full content-based features which 
are denoted by B (Castillo, Donato, Gionis, Murdock, & Silvestri, 2007). Label C represents 
the link-based features. The transformed link-based features are designated by set D. This 
conversion works better for classification than the raw link-based features. More detailing on 
these features is described by (Becchetti, Castillo, Donato, Leonardi, & Baeza-Yates, 2006). 
For experimental purpose, the authors combined some feature sets, like A+C and B+D (Singh 
& Singh, 2018; Goh & Singh, 2015; Goh, Singh, & Lim, 2013; Singh, Kumar, & Leng, 2011; ).

Table 1 
Distribution of features in dataset (WEBSPAM UK-2006)  

Total Features Name of feature Set 
24 Content Based Features (A)
96 Full Content Based Features (B)
41 Link Based Features (C)
138 Transformed Link Based Features (D)
65 Content + Link  Based Features (A+C)
234 Full Content + Transformed Link Based Features (B+D)
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The classification (training and testing set) in spam database is presented in Table 2. 

Table 2 
Classification of Spam and Ham in Benchmark  

Benchmark
Training Set (Set 1) Testing Set (Set 2)

Spam 553 1250
Ham  (Non-Spam) 3810 601
Total 4363 1851

For the classification, the following algorithms were used: Naïve-Bayes, SVM, J48, MLP 
and AdaBoost. The Naive Bayes is a basic version of Bayes formula with strong independent 
assumptions between features and concludes which class a unique instance belongs to. J48 
is the implementation of algorithm C4.5, and its predecessor, that summarises training data 
in the form of a decision tree. Random forest builds multiple decision trees and outputs the 
class which is mean prediction of the individual trees. SVM classifier gives high-dimension 
features using hyperplanes which provide the largest minimum distance to divide data points 
between classes. MLP is a feedforward neural network model that maps the weighted inputs 
to the output of each neuron using multi-weights connections. AdaBoost also called Adaptive 
Boosting is used for building strong classifiers with linear combination of weak classifiers.

Evaluation Criteria

After construction of the classifier, it must be assessed for accurateness. Effective estimation is 
also significant because without knowing the expected accuracy, it cannot be used in real-world 
problems. Confusion matrix for binary classification (spam or non-spam) was used. The main 
measure is classification accuracy which is totally correct prediction divided by total cases in 
data set. But here, the authors took two other evaluation criteria - area under the ROC (AUC) 
and F1 score (F-measure) because it cannot be said that any one of the classifiers is strictly 
better than the other. ROC is 2-dimensional graphs where FP rate (FPR) and TP rate is plotted 
on X and Y axis respectively. It represents trade-off between costs (FP) and benefits (TP). F1 
score is the harmonic mean of precision and recall (Eq. 4). Precision is correct positive cases 
divided by total positive predicted cases whereas recall is termed as the count of correct positive 
predictions divided by the total count of positives cases.

                  (4)

Parameter Setting

Parameter selection is one of the most essential parts of any algorithm. The parameters in 
PSO are taken according to the settings suggested by Clerc and Kennedy (2002). The detailed 
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settings are shown as follows: c1 = c2 = 1.496, w = 0.7298. Stopping criteria is taken as 30 
(maximum iteration) in this experiment. Swarm (particles) size also affects performance of 
PSO because with few particles, it tends to confine with local maxima while the use of too 
many particles degrades (slows down) the algorithm. So, the authors took the swarm size as 
half of the total features used. While using NB, J48 and AdaBoost classifiers default parameters 
were considered. In SVM, radial basis function was taken because it gives value to each point 
based on its distance from the origin or a fixed centre. In the MLP structure, learning rate and 
momentum is taken as 0.3 and 0.2 respectively. The total number of epoch used for training 
is 500, validation threshold for testing is 20 and the number of features used in feature set is 
used as hidden neurons.

RESULTS AND DISCUSSION

For each feature set in WEBSPAM UK-2006, the authors ran CFS-PSO algorithm for the 
selection of optimal features. The reduction of features in link based feature set (C) was 88% 
(maximum) and 68% (minimum) for full content based feature set (B). Reduction for other 
feature sets is shown in Table 3. To test the performance of CFS-PSO (in terms of accuracy), 
five classification algorithms were applied: Naïve Bayes, J48, AdaBoost, SVM and MLP. After 
that results were compared using original number of features. 

Table 3 
Optimal selection of features after applying CFS+PSO   

Label Original features Optimal features after CFS+PSO Reduction in features
A 24 6 75%
C 41 5 88%
A+C 65 12 82%
B 96 31 68%
D 138 40 71%
B+D 234 59 75%

Evaluation of CFS+PSO for Accuracy Parameters

F1 Score and AUC with existing (original) and optimum features (after applying CFS+PSO) 
for Naïve Bayes classifier is shown in Table 4. The maximum improvement of F1 Score (with 
optimal features) is found for feature set B+D (21.7%) followed by 15.53% in case of feature 
set D, 6.41% for feature set A and 2.29% for feature set C. Naïve Bayes showed improvement 
in AUC and also 8.23% in case of B+D feature set while 5.41%, 3.42%, 2.92% and 1.16% was 
seen for A+C, D, C and A feature sets respectively. But for feature set B, F measure and AUC 
(with optimal features) are decreased by 7.61% and 2.17% respectively (shown in Figure 6). 
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For J-48, AUC (with optimal features) is increased with maximum improvement of 12.60% 
in case of link based features, as shown in Table 5). F1 score is improved by 9.54% for link 
based, 8.43% for transformed link based and 2.30% for B+D feature sets while decreased for 
A+C and content based feature sets (Figure 7).

Table 4 
F1 score and AUC with existing (Original) and optimum features for Naïve Bayes classifier   

Label Naïve Bayes Classifier
F1 score with 
existing features

AUC with existing 
features

F1 score after 
CFS+PSO

AUC after 
CFS+PSO

A 0.39 0.687 0.415 0.695
C 0.7 0.72 0.716 0.741
A+C 0.699 0.739 0.64 0.779
B 0.67 0.738 0.619 0.722
D 0.657 0.731 0.759 0.756
B+D 0.647 0.741 0.784 0.802
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Table 5 
F1 score and AUC with existing and optimum features for J-48 classifier   

Label J48 Classifier
F1 score with 
existing features

AUC with existing 
features

F1 score after 
CFS+PSO

AUC after 
CFS+PSO

A 0.563 0.706 0.514 0.719
C 0.629 0.627 0.689 0.706
A+C 0.677 0.695 0.665 0.768
B 0.646 0.694 0.646 0.717
D 0.676 0.723 0.733 0.761
B+D 0.697 0.701 0.713 0.74
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With AdaBoost, F1 score increased by 33.02% for transformed link based feature (denoted 
by D) followed by minor enhancement of 4.67% for link based feature set while decreased 
by 3.44% and 6.23% for A+C and full content feature set respectively (Figure 8 and Table 6). 
However, there is no improvement in AUC by CFS+PSO (with exception of C feature set).
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Table 6 
F1 Score and AUC with existing (Original) and optimum features for AdaBoost classifier   

Label AdaBoost Classifier
F1 score with 
existing features

AUC with existing 
features

F1 score after 
CFS+PSO

AUC after 
CFS+PSO

A 0.406 0.759 0.438 0.738
C 0.643 0.68 0.673 0.685
A+C 0.668 0.773 0.645 0.748
B 0.61 0.811 0.572 0.799
D 0.315 0.763 0.419 0.744
B+D 0.655 0.84 0.726 0.822
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 Figure 8.  (a) F1 Score (F-measure) for AdaBoost (b) AUC for AdaBoost 

 

AUC and F1 Score for every feature set is increased for SVM with optimum features (Figure 9 

and Table 7). The maximum improvement in AUC and F1 Score is 3.78% and 45.83% for C 

feature set respectively.  
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AUC and F1 Score for every feature set is increased for SVM with optimum features (Figure 
9 and Table 7). The maximum improvement in AUC and F1 Score is 3.78% and 45.83% for 
C feature set respectively. 

Table 7 
 F1 score and AUC with existing (Original) and optimum features for SVM classifier   

Label SVM Classifier
F1 score with 
existing features

AUC with existing 
features

F1 score after 
CFS+PSO

AUC after 
CFS+PSO

A 0.182 0.506 0.199 0.514
C 0.168 0.503 0.245 0.522
A+C 0.159 0.5 0.21 0.515
B 0.163 0.501 0.189 0.509
D 0.573 0.678 0.613 0.703
B+D 0.169 0.504 0.18 0.507	
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In case of MLP, the maximum enhancement of F1 Score is for A+C (2.38%), full content based 
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feature sets. AUC is increased by 16.13% and 4.46% only for B+D and D feature set.  
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In case of MLP, the maximum enhancement of F1 Score is for A+C (2.38%), full content 
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all other feature sets. AUC is increased by 16.13% and 4.46% only for B+D and D feature set. 
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Analysis of Time Complexity

The complexity of the algorithm is reduced due to the removal of irrelevant and redundant 
features. Hence the computational time for every classifier is also reduced. But here the 
authors have only shown the analysis of SVM and MLP because they are computationally 
very expensive in comparison to other classifiers. From Table 9, it can be seen that time taken 
by classifier with optimal features (by applying CFS-PSO) is less than the time taken by the 
same classifier with original features for every feature set.

Table 8 
F1 score and AUC with existing (Original) and optimum features for MLP classifier  

Label MLP Classifier
F1 score with 
existing features

AUC with existing 
features

F1 score after 
CFS+PSO

AUC after 
CFS+PSO

A 0.576 0.801 0.557 0.783
C 0.655 0.81 0.586 0.755
A+C 0.673 0.864 0.689 0.835
B 0.595 0.827 0.646 0.814
D 0.607 0.807 0.67 0.843
B+D 0.764 0.75 0.739 0.871	
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Figure 10.  (a) F1 Score (F-measure) for MLP (b) AUC for MLP 
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CONCLUSION

In this paper, the authors integrated CFS and PSO and comparison was done on two accuracy 
measures (AUC and F1 Score) using five different classifiers The maximum increase of AUC 
for B+D feature set is 16.13% and 8.23% in MLP and NB respectively but in case of J48 
classifier it is improved by 12.60% for link based feature set. F1 score is improved by 33.02% 
in transformed link based features using AdaBoost but AUC is decreased for all feature sets 
except link based features. In the current analysis, CFS+PSO technique is best suited for SVM 
as both accuracy parameters are increased for every feature set and computational cost is also 
very low. In future, other meta-heuristic algorithms would be considered and comparison of 
this technique with wrapper and hybrid approach can also be made.
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